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FERMI-WALKER TRANSPORTS OVER SPACES
WITH AFFINE CONNECTIONS AND METRICS*

S.Manoff**

The notion of Fermi-Walker transport is generalized for the case of differentiable
manifolds with different (not only by sign) contravariant and covariant affine connections and
metrics [(L,, g)-spaces]. The existence of such type of transport over (L, g)-spaces allows the

determination of a proper nonrotating accelerated observer’s frame of reference if a (va 8-

space is used as a model of the space-time.
The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

Ilepenocsr depmu-Yonkepa B npocTpaHcTBax
¢ aQHHHBIMH CBA3HOCTAMH H METPHKOM

C.Manoe

Pacemotpen nepenoc ®epmu-Yonkepa B V,- # U, -npoctpancrsax. Hailaeno o6o6menue
W NPOCTPAHCTB C ahHHHBIMH CBA3HOCTIME H METPHKON [(L,, g)-mpoctpancts]. OGobuienue

He ABIAETCA ONHO3HAYHEIM H 3aBUCHT OT CTPYKTYDHI KOBAPHAHTHOTO aHTHCHMMETPHYHOTO TeH-
30pa BTOPOTO paHra B KOHCTPYKLHH nepeHoca PepMu-Yoskepa. CyllecTBOBaHHe TAKOTO THIA
neperoca B (L, g)-NPOCTPaHCTBAX NO3IBONAET ONPERENHTh COGCTBEHHYIO HEBpaLlAINYIOCs

CHCTEMY YCKOPEHHOro Habmonaresns, eciu (L,,, £)-TIpOCTPaHCTBO paccMaTpHBaeTCa KaK MOAeNb

MpOCTPAHCTBA-BPEMEHH.
PaGorta Beinonuena s JlaGoparopuu Teopetnueckoil tusukn uM. H.H.Boromo6osa OUSIH.

1. Introduction

The last time evolution of mathematical models for describing the gravitational
interaction on a classical level shows a tendency to generalizations using spaces with affine
connection and metric [1], [2], which can be also generalized using the freedom of the
different-geometric preconditions. The fact that an affine connection, which in a point or
over a curve in Riemannian spaces can vanish (principle of equivalence in the Einstein
theory of gravitation (ETG)) and can also vanish under a special choice of the basic system
in a space with affine connection and metric [3], [4], [5], shows that the equivalence
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principle in the ETG is only a corollary of the mathematical apparatus used in this theory.
Therefore, every differentiable manifold with affine connection and metric can be used as a
model for space-time in which the equivalence principle holds. Even if the manifold has two
different (not only by sign) connections for tangent and co-tangent vector fields the
principle of equivalence is fulfilled for the one of the two types of vector fields [6].

The notion of a nonrotating observer’s frame of reference is related in the Einstein
theory of gravitation to a special type of a transport of contravariant vector fields along a
nonisotropic (non-null) contravariant vector field u considered as a tangent vector field to
the trajectory of the observer. This special type of transport, called Fermi~Walker transport
[7], does not change the length of a covariant nonisotropic vector fields.

A proper frame of reference can also be interpreted as a congruence of trajectories (a
set of nonintersecting curves) of particles moving with an acceleration in such a way that
the distance between all particles with equal (one and the same) proper time and the angles
between the vectors connecting them from a given basic trajectory do not change along their
trajectories. :

On the other side, the Fermi-Walker transport is related to the so-called relative
transport (called also Fermi derivative) as well as to the relative velocity and the connected
with it notions of shear, rotation and expansion {8].

1.1. Fermi-Walker Transport in V - and U -Spaces. On the grounds of the heuristic

considerations of the properties of a proper frame of reference in V, -spaces (n=4) the

Fermi-Walker transport V § = F V & has been proposed in the form [9], [10]

F9,£=1 10 ® ) - 4 ® g@)1®) = B M
where e =g(u, u)=const. #0, V u=a, & e T(M).

The difference Vu§=—F V £="V & determines the s.c. relative transport 'V £ called
also Fermi derivative. Therefore, the Fermi—Walker transport can also be defined by the

condition 'V £=0.

The vector field u fulfills automatically the condition for a Fermi—Walker transport. At
the same time

Fig) =+ gl 2)g(a) - 8@, Dg) @

It has to be stressed that the properties of the Fermi-Walker transport (FWT) are not
independent of the explicit structure of F&. The only important property of F& leading to
its characteristics is that '@ is a covariant antisymmetric tensor field of second rank
(@ e A%an).

A comparison of the structure of the Fermi-Walker transport with the structure of the
rotation velocity tensor ® as an element of the relative velocity v in V, -spaces shows that

o contains the term F% which determines the FWT
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w=h (s)h, =g(s)g - % {8() ® [g()](s)g - [8(W)](s)g ® g(w)} =

=88~ [¢(0) ® 8() - @) ® g} =, + 1 5, ®

where 0, =g(s)g, [g(wl(s)g= % g(a), g(u, uy=e=const.#0. 0, is interpreted as a space

rotation [9].
Instead of the form for '@ in V -spaces, we can use the form of F&® for nonisotropic
vector field u in U, -spaces [8]. Then, for U, -spaces we will have

F- 2

o="{8() ® [gW)](s)g - [eW)](s)g ® g(w)}. “)

The relation Vu§=F§u§=§[F o(&)] determines the FWT in U -spaces. It can also be
expressed by means of the relative transport (the Fermi derivative) 'Vué = Vu§ - ’Vug using
the condition 'V E=0.

In the case e =const.# 0 and T(§, ) =0 for VE ne T(M) (T{;. =0), the FWT passes to

that in V -spaces.
One can summarize the properties of the FWT in V - and U, -spaces in the following

definitions depending on the physical interpretation of the Fermi—Walker transport.

Definition 1. The Fermi-Walker transport is a special type of transport (along a non-
isotropic contravariant vector field) preserving the length of the transported contravariant
nonisotropic vector fields and the angle between them.

The interpretation of the Fermi—~Walker transport as a transport preserving the length of
a set of orthogonal to each other nonisotropic vector fields and the right angles between
them or as a transport preserving the proper nonrotating frame of reference of an observer
moving with acceleration Vuu =a#0 in the space-time, allows a weaker definition of the
Fermi-Walker transport [9].

Definition 2. The Fermi-Walker transport is a special type of transport (along a
nonisotropic contravariant vector field) preserving the length of a set of orthogonal to each
other nonisotropic vector fields and the right angles between them.

The last definition is restricted on orthogonal nonisotropic vector fields only.

The two different to each other definitions allow different generalization of the Fermi-
Walker transport over differentiable manifolds with different (not only by sign)
contravariant and covariant affine connections and metrics [(Ln, g)-spaces].

2. Generalized Fermi-Walker Transports over (Zn, g)-Spaces

The nonmetricity q, [Vug =4q,#0 for Vue T(M)] over differentiable manifolds with

different (not only by sign) contravariant and covariant affine connections and metrics
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[(Zn, g)-spaces) [6] does not allow the direct application of the explicit forms of the Fermi-
Walker transport in V - and U -spaces. The rate of change of the length of a nonisotropic

contravariant vector field and the rate of change of the cosine of the angle between two
nonisotropic vector fields over a (L , g)-space are given by the expressions

1
=5 (96D + 257,501 20 ®)
1
ul cos (& M1 =7 [(V,&)& ) +8(V,§ m) +2(& V,m] -
&n

1 1
- l: 7.% (ulé) + a (uln):l cos (€, ). 6)

2.1. Definition and Properties of a Generalized Fermi-Walker Transport. On the
ground of the basic properties of a Fermi—Walker transport (FWT) (s. the first definition of
FWT) one can introduce the following definition

Definition 3. A generalized Fermi~Walker transport Vu§= F VuE_, along a nonisotropic

vector field u is a transport of the type

vE=7f0-1 V00 ="V E=F (0] -3 EV,00), ™

where fo = Fu)l.j dx‘adxl= Fu)aBea el Foe AX(M), glu,uy=e#0, u, & € TM).
From the definition of FWT and the expression for ulg and u[ cos (§, )] the properties
of this type of transport follow.

Proposition 1. The generalized Fermi—Walker transport along a nonisotropic vector
field u (I #0) preserves the length of energy arbitrary given nonisotropic contravariant

vector field &,
The proof follows from the expression for ulg and the definition for " VuF,. Therefore,
for the vectors &, 1} and u the relations ulé =0, uln =0, ulu =0, [E, n, u € T(M)], are fulfilled.
Proposition 2. The generalized Fermi-Walker transport along a nonisotropic vector

field u (Iu #0) preserves the angle between two contravariant nonisotropic vector fields &

and 1, ie., ulcos (&, M) =0 for u, &, ne T(M).
The proof follows from the expression for the rate of change u[cos(§, )] of

cos (€, 1) along u and the proposition 1. For n=u the condition u[ cos (§,n)] =0 also
follows.

The generalized Fermi-Walker transport of u along u leads to the condition

Vu=a="9u=g Fo) -3 7 . ®
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Different antisymmetric covariant tensor fields of second rank ‘e AZ(M) induce
different generalized Fermi-Walker transports. The same statement is also valid for
different types of metric transport V L

One can consider a generalized FWT along u as a special case of a relative transport
'V E along u defined as

— 1
’Vu§ = VuE-' _ Fvué = [Vu - g(F(D — E V“g:l@)’ )]
. _ Fo _ —F 1
with 'V =V — V=V -glo- > V.8

The condition 'V =0, u,§ € T(M), determines a generalized FWT. 'V 5 can also be

called generalized Ferml derivative of a contravariant vector field £ along a contravariant
vector field u over a (L g)-space.

3. Special Cases of Generalized Fermi-Walker Transports

Let we now specify the construction of the antisymmetric covariant tensor field
used for the determination of a generalized Fermi—Walker transport.

3.1. Canonical Fermi~Walker Transport. The canonical FWT can be considered as a

simple generalization of the FWT in V -spaces to FWT in (Zn, 8)-spaces, where Fo= F(T),

VE=TV = HO1 -5 7Y, 00 = [ -2, ](&), (10)
with 6= (5(0) ® 400 ~ 800 ® 5@, ") = (@)~ g g = @) 5w, 0)=
=g(a, u) = [ue vV &), w], ( Fco—— Vg ]

For thlS type of Fcrml—Walker transport the relations are valid:
ul§ =0, ul1rl =0, ul =0, E,m,ue T(M), g(u, u)=e#0, an
V,u=a="Vu=glh@1 -1 5V £)0. (12)

From the last expression, it follows that u does not fulfil automatically the conditions
for the canonical Fermi-Walker transport.

For the cosine of the angle between two contravariant nonisotropic vector fields we
obtain

ul cos (§, M)] =0, u[ cos (§, u)] =0, u[ cos (M, w)] =0, & N, ue TM). (13)

3.2. Fermi-Walker Transport Related to the Rotation Velocity. 1If we close the
antisymmetric covariant tensor ® from the representation of the relative velocity by means



10 Manoff S. Fermi-Walker Transports over Spaces

of shear, rotation and expansion [11], then we can define a Fermi-Walker transport of the
type

- 1 _ - |
V.E=TV E=Fl0@) -5 #V 8@ =50-7 V0@ (14)
where
Fy - 1 -
Vu-ng— , V“g'], w—hu(s—-q)hu‘ (15)
For the contravariant nonisotropic vector field 4 the Fermi—Walker transport has the

form

Vu=g ( 0-39,8 ](u) = )W) - 3 §V, ) =5 &Y, ) =LY, W), (16)

since Z(@)() =0, (V,8)w) =V, [g()] - (7 1.

4. Fermi-Walker Transport for Orthogonal Vector Fields

The use of the second definition of Fermi—Walker transport concerning the preservation
of the length of orthogonal to each other vector fields only and the right angle between
them leads to another form of the generalized Fermi—Walker transport.

Definition 4. V £ = F -V—ué with

_ I
VE=FVE=22 @+ EO® -3 AV (a7
where lugg(u, Ey=1, e=g(u,u)#0, & ue T(M),
PV, =15 1h,@)] ® g) + B -5 &Y, 0, (18)

is called Fermi-Walker transport for orthogonal vector fields. It is obvious that if the vector
field & is orthogonal to u (1§u=1=0), then Vu§=fVu§=FVu§ is the FWT related to the

relative velocity.

_Fo _ . . = 1.
If Vuu = Vuu, then Vuu =g has to fulfil the equation Vuu =a=glh (@)] - > g(Vug)(u).
By the use of the definition of the length of a contravariant nonisotropic vector field
and the definition of the cosine between two nonisotropic contravariant vector fields
together with the expressions for their rate of change along a nonisotropic vector field # one

can prove the propositions
Proposition 3. The Fermi—Walker transport Vu§=FVu§ preserves the length of an
orthogonal to the nonisotropic vector field u contravariant vector field & along u.
Proposition 4. The Fermi-Walker transport Vu§= Fﬁu?’; preserves the angle between

two, orthogonal to the nonisotropic vector field u, contravariant nonisotropic vector fields

€ and .
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If the vector fields & and 1 are orthogonal to u vector fields, i.e., if lu§ =g(u,&)=0and
L =8, M) =0, then uf cos (€, n)] =0.

The rate of change of the right angle between the vector field » and a contravariant,
nonisotropic, and orthogonal to u vector field § follows from the expression (6) for n=u
in the form

uleos (& ] =7 h (e, &)=~ 8@, ®), (19)
&u Eu

where | =g(u,u)=e=1 i, Iu§ ={=0=g(u, &), li #0, h (a,u)=0.

Therefore, if the right angle between u and € has not to change along u, then & has to
be orthogonal to the acceleration g, i.e., if uf cos (€, u)] =0, then g(a, &) =0 and vice versa.
On the other side, the angle between two orthogonal to u vector fields £ and 1 could be
different from the right angle.

Remark. For an orthogonal to u contravariant and nonisotropic vector field &:

VE=E=E (0=, )@

5. Conclusion

The existence of Fermi—Walker transports over (Z", g)-spaces allows the determination

of a proper nonrotating, accelerated observer’s frame of reference for this type of spaces if
used as models of the space-time. Therefore, the (L,, 8)-spaces could have meaningful

applications in models of physical systems and their interactions and especially in models
concerning the gravitational interaction. The different types of Fermi-Walker transports
could also be used for description of the motion of moving in external fields particles with
equal proper times and constant distance and angles between them considered from the
trajectory of one of the particles.
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